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Recently Shisha and Mond 15, 61 and Devore [I [ determined a quan
titative estimate for the degree of convergence of linear positive operators to
a given continuous function on a closed and bounded interval from the
degrees of convergence to the test functions x K

, k = 0, I, 2. Ditzian [21
modified these results to operators defined for functions on [0. (0) or
(-00, (0).

Following Ditzian 121, we define operators of the type J7 (T, S. .u).

DEFINITION 1.1. Let T c (- 00, (0) be closed, let - 00 < a < b < 00. and
set S = Tn la. b I. Let ,u(t) be a real-valued function on l' satisfying .u(t);;:, 1.
t E T. A sequence ~ L II f of linear positive operators is said to be of type
;f (1'. S•.u) if the domain of each I'll consists of all functions (or all
measurable functions) f on l' satisfying there

If(t)I~MU)(t' -+- I),u(t)

and if

II (Lnl')(X) - x' 11((\1 = O( I).

and

!/-t00,k=O.I.2.

K being a constant.
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LINEAR POSITIVE OPERATORS
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The purpose of this note is to sharpen Theorem 2.I(C) of [2]. We prove

THEOREM 2.1. Let A be a positive number and let 5 1= la I' b l Icia, b I
so thatfor some I] > 0, [a, ~ '7, b l + 171 n Tn {(-oo, (0) ~ la, bJf = 0. Let
jLnf be a sequence of linear positive operators of type %(T, 5,11) and let

fE ella. b]. ThenJor n;;? I,

IILJ -film,) (: II LI/ 1 - Illllfll + IILI/(t ~ x)(x)llllf' II

+ LI1~ +.u" ~IIL" 111'/2 + 2~j w(f'; AI1,J, (2.1)

where w is the modulus of continuity on la,bl, and 111/=IILI/(t~x)2(x)I\'!2.

II II being the sup-norm on 5 I and L a constant.

If (L" I )(x) == I and (LI/t)(x) == x, then (2.1) reduces to

Proof For xE 5" tE la, -I], b I + 1]1 n Twe write

.1

f(t) - f(x) = (t ~ x) f'(x) + I (f'(~) - f'(x)) d~.
~x

Using the proof in [71 and the inequality

If'(~)-f'(x)1 (: (I + I~~XI) w(f';!J), !J > 0,

we get

I(L"f)(x) - f(x)(L" 1)(x)1

r j'l (. 1 ~ ~ XI) II(: ILI/(t - x)(x)llf'(x)1 + w(f';!J) L" l t I + !J' d~ J (x),

r (L,,(t - xf)(x) I
(:ILI/(t-x)(x)llf'(x)l+w(f';!J) lL"lt-xl(x)+ 2!J J'

Choosing !J = A.un, we pursue a slight modification of the proof given by
Ditzian 12 j, details of which we may omit.

EXAMPLE. The positive linear operators obtained from the inversion of
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the Weirstrass transform for measurable functions f on (-00, (0) are given
by

(L,J)(x) = (4: ) 1/2 rX:(f exp ( - (t - X)2 ; ) f(t) dt.

From [2] we have

(Lnl)(x)= 1,
, ,2

(Lnt')(x) = x' +~,
11

so that (L n(t-x)2)(x)=2/n. Also LnE J1(T,fI), where T=(-oo. (0) and
fI(t) = el

'!4. Choosing A = 1/-/2 in (2.2), we get

L 1 being a constant, which is sharper than the corresponding estimate due to
Ditzian 121.

3

It is worthwhile to point out that Theorem 4 of Mohapatra [31 and the
result of Mond and Vasudevan 141 can be improved similarly.
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